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Abstract

A conjugate gradient method based inverse algorithm is applied in the present study in simultaneous determining the

unknown time-dependent Biot numbers of heat and moisture transfer for a porous material based on interior mea-

surements of temperature and moisture.

It is assumed that no prior information is available on the functional form of the unknown Biot numbers in the

present study, thus, it is classified as the function estimation in inverse calculation.

The accuracy of this inverse heat and moisture transfer problem is examined by using the simulated exact and in-

exact temperature and moisture measurements in the numerical experiments. Results show that the estimation on the

time-dependent Biot numbers can be obtained with any arbitrary initial guesses on a Pentium IV 1.4 GHz personal

computer.

� 2002 Published by Elsevier Science Ltd.

1. Introduction

The direct heat and moisture transfer problem is

concerned with the determination of temperature and

moisture at interior points of a region when the initial

and boundary conditions and thermophysical properties

are specified. In contrast, the inverse heat and moisture

transfer problem considered here involves the determi-

nation of the unknown time-dependent Biot numbers

for heat and moisture transfer in a porous material from

the knowledge of the temperature and moisture mea-

surements taken within the body.

For the conventional inverse heat transfer problems,

the estimation of unknown thermal boundary conditions

are always the main concerns. The technique of conju-

gate gradient method (CGM) [1] has been shown its

potential for these kind of problems and has been ap-

plied to many applications. For instant Huang and Chen

[2] used boundary element method and CGM to esti-

mate the boundary heat fluxes for an irregular domain.

Huang and Wang [3] used CGM in estimating surface

heat fluxes for a three-dimensional inverse heat conduc-

tion problem. Huang and Chen [4] used same technique

in estimating surface heat fluxes for a three-dimensional

inverse heat convection problem. However, the inverse

problem for coupled heat and moisture transport is very

limited in the literature.

Recently, Chang and Weng [5] used similar algorithm

to determine the moisture flux for an inverse heat and

moisture transfer problem based on temperature mea-

surements. In their paper the boundary conditions are

assumed in a very ideal situation, i.e. they did not apply

energy and mass balance at the boundaries. This will

certainly simplify the inverse analysis but at the same

time may also not realistic for the applications. For the

case when internal measurement is applied, a two-layer

problem is needed to obtain the analytical for the ad-

joint problem. Moreover, there is a suspicious result in

their paper that will be discussed later in text.

For this reason the present paper is to extend their

study with some improvements. Firstly, the original
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Lukiov’s equation [6] that governing the heat and mois-

ture transfer with energy and mass balance at the

boundaries are considered and solved in the present in-

verse analysis. The derivation of the relevant equations

for use in CGM is thus more involved but also more

realistic. Secondly, two unknown time-dependent Biot

numbers of heat and moisture transfer for a porous

material are to be estimated simultaneously based on

temperature and moisture measurements. For this rea-

son two sensitivity problems and two search step sizes

are needed in the present study. An explicit expression

for the determination of search step sizes will be derived

with the help of the solutions of sensitivity problems in

text. Thirdly, we will demonstrate in text that it is not

necessary to arrange the inverse problem as a two-layer

problem in the present study when interior measure-

ments are used. This fact will simplify the entire inverse

analysis.

The CGM derives basis from the perturbational

principles [7] and transforms the inverse problem to the

solution of three problems, namely, the direct problem,

the sensitivity problem and the adjoint problem, which

will be discussed in detail in text.

2. Direct problem

To illustrate the methodology for developing ex-

pressions for use in simultaneous determining two un-

known Biot numbers BiqðsÞ and BimðsÞ for heat and

moisture transfer, respectively, we consider the follow-

ing inverse problem. A slab of thickness L is initially at

temperature T ðx; 0Þ ¼ T0 and moisture uðx; 0Þ ¼ u0. For
time t > 0, the boundary surface at x ¼ 0 is subjected to

a heat flux q, while x ¼ L is subjected to third kind

boundary condition for both heat and moisture transfer.

If the following dimensionless quantities are defined

[8]

BimðsÞ ¼
hmL
km

; BiqðsÞ ¼
hL
k
; Ko ¼ r

c
u0 � u�

Ts � T0
;

Lu ¼ am
a
; Pn ¼ d

Ts � T0
u0 � u�

; Q ¼ qL
kðTs � T0Þ

;

X ¼ x
L
; h1 ¼

T � T0

Ts � T0
; h2 ¼

u0 � u
u0 � u�

; s ¼ at
L2

:

Here k and km are the thermal and moisture conduc-

tivity, Ts is the temperature of surrounding air, u� is the
moisture in equilibrium with surrounding air, h and hm
are the heat and mass transfer coefficient, a and am are

the thermal and moisture diffusivity, r is the specific heat

of evaporation and c is the specific heat capacity of

material. Fig. 1 shows the schematic picture of the pre-

sent study.

The dimensionless formulation of this heat and

moisture transfer problem can be expressed as:

Nomenclature

BimðsÞ Biot number for mass transfer

BiqðsÞ Biot number for heat transfer

J functional defined by Eq. (2)

J 0
1, J

0
2 gradient of functional defined by Eqs. (16)

and (17)

Ko Kossovitch number

Lu Luikov number

P1, P2 direction of descent defined by Eqs. (4a) and

(4b)

Pn Possnov number

Q dimensional heat flux

X dimensionless coordinate

Y1ðX ; sÞ measured dimensionless temperature

Y2ðX ; sÞ measured dimensionless moisture

Greek symbols

s dimensionless time

b1, b2 search step sizes

c1, c2 conjugate coefficients

dð�Þ Dirac delta function

k1ðX ; sÞ, k2ðX ; sÞ Lagrange multiplier defined by Eqs.

(13a)–(13h)

h1ðX ; sÞ estimated dimensionless temperature

h2ðX ; sÞ estimated dimensionless moisture

D�hh1, D�hh2, D~hh1 and D~hh2 sensitivity function defined by

Eqs. (6a)–(7h)

e phase change criterion

g convergence criteria

Superscript

n iteration index

Fig. 1. Schematic picture of the present study.
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oh1ðX ; sÞ
os

¼ o2h1ðX ; sÞ
oX 2

� eKo
oh2ðX ; sÞ

os
;

in 06X 6 1; s > 0; ð1aÞ

oh2ðX ; sÞ
os

¼ Lu
o2h2ðX ; sÞ

oX 2
� LuPn

o2h1ðX ; sÞ
oX 2

;

in 06X 6 ; s > 0: ð1bÞ

Subjected to the following initial and boundary condi-

tions

h1ðX ; 0Þ ¼ 0; in 06X 6 1; s ¼ 0; ð1cÞ

h2ðX ; 0Þ ¼ 0; in 06X 6 1; s ¼ 0; ð1dÞ

oh1ðX ; sÞ
oX

¼ �Q; at X ¼ 0; ð1eÞ

oh2ðX ; sÞ
oX

¼ �Pn
oh1ðX ; sÞ

oX
; at X ¼ 0; ð1fÞ

oh1ðX ; sÞ
oX

� BiqðsÞ½1� h1	 þ ð1� eÞKoLuBimðsÞ½1� h2	

¼ 0; at X ¼ 1; ð1gÞ

� oh2ðX ; sÞ
oX

þ Pn
oh1ðX ; sÞ

oX
þ BimðsÞ½1� h2	 ¼ 0;

at X ¼ 1: ð1hÞ

Here e is the phase change criterion. It is obvious that

the present problem is coupled both in governing

differential equation and in boundary conditions. The

direct problem considered here is concerned with cal-

culating the medium temperature and moisture when the

Biot numbers BiqðsÞ and BimðsÞ, thermal properties and

initial and boundary condition are known. The Crank–

Nicolson finite differences method with iterations can be

used to solve this coupled direct problem.

3. Inverse problem

For the inverse problem considered here, the Biot

numbers BiqðsÞ and BimðsÞ are regarded as being un-

known, but everything else in Eqs. (1a)–(1h) is known.

In addition, the measured temperature and moisture

distributions within the space domain at any time are

considered available.

Let the measured temperature and moisture at posi-

tion Xs and time s be denoted by Y1ðXs; sÞ and Y2ðXs; sÞ,
respectively. Then this inverse problem can be stated as

follows: by utilizing the above mentioned measured

temperature and moisture data Y1ðXs; sÞ and Y2ðXs; sÞ,
estimate the unknown Biot numbers BiqðsÞ and BimðsÞ
over the specified time domain.

The solution of the present inverse problem is to be

obtained in such a way that the following functional is

minimized:

J BiqðsÞ;BimðsÞ
� �
¼

Z sf

s¼0

½h1ðXs; sÞ � Y1ðXs; sÞ	2 ds

þ
Z sf

s¼0

½h2ðXs; sÞ � Y2ðXs; sÞ	2 ds

¼
Z 1

X¼0

Z sf

s¼0

½h1ðX ; sÞ � Y1ðX ; sÞ	2dðX � XsÞdsdX

þ
Z 1

X¼0

Z sf

s¼0

½h2ðX ; sÞ � Y2ðX ; sÞ	2dðX � XsÞdsdX :

ð2Þ

Here h1ðX ; sÞ and h2ðX ; sÞ are the estimated (or com-

puted) temperature and moisture at time s. These

quantities are determined from the solution of the direct

problem given previously by using the estimated Biot

numbers BiqðsÞ and BimðsÞ. dð�Þ is the Dirac delta

function.

4. Conjugate gradient method for minimization

The following iterative process based on the CGM [1]

is now used for the estimation of Biot numbers BiqðsÞ
and BimðsÞ by minimizing the above functional

J ½BiqðsÞ;BimðsÞ	:

Binþ1
q ðsÞ ¼ BinqðsÞ � bn

1P
n
1 ðsÞ; n ¼ 0; 1; 2; . . . ; ð3aÞ

Binþ1
m ðsÞ ¼ BinmðsÞ � bn

2P
n
2 ðsÞ; n ¼ 0; 1; 2; . . . ; ð3bÞ

where bn
1 and bn

2 are the search step sizes in going from

iteration n to iteration nþ 1, and Pn
1 ðsÞ and Pn

2 ðsÞ are

the directions of descent (i.e. search directions) given by

Pn
1 ðsÞ ¼ J 0n

1 ðsÞ þ cn1P
n�1
1 ðsÞ; ð4aÞ

Pn
2 ðsÞ ¼ J 0n

2 ðsÞ þ cn2P
n�1
2 ðsÞ; ð4bÞ

which is a conjugation of the gradient directions J 0n
1 ðsÞ

and J 0n
2 ðsÞ at iteration n and the directions of descent

Pn�1
1 ðsÞ and Pn�1

2 ðsÞ at iteration n� 1. The conjugate

coefficient is determined from

cn1 ¼
R sf

s¼0
½J 0n

1 ðsÞ	
2
dsR sf

s¼0
½J 0n�1

1 ðsÞ	2 ds
; with c01 ¼ 0; ð5aÞ

cn2 ¼
R sf

s¼0
½J 0n

2 ðsÞ	
2
dsR sf

s¼0
½J 0n�1

2 ðsÞ	2 ds
; with c02 ¼ 0: ð5bÞ

To perform the iterations according to Eqs. (4a) and

(4b), we need to compute the step sizes bn
1 and bn

2 and the

gradient of the functional J 0n
1 ðsÞ and J 0n

2 ðsÞ. In order to

develop expressions for the determination of these two

quantities, two sensitivity problems and an adjoint

problem are constructed as described below.
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5. Sensitivity problems and search step sizes

Since the problem involves two unknown Biot num-

bers BiqðsÞ and BimðsÞ, in order to derive the sensitivity

problem for each unknown function, we should perturb

the unknown function one at a time.

Firstly, it is assumed that when BiqðsÞ undergoes a

variation DBiqðsÞ, h1ðX ; sÞ and h2ðX ; sÞ are perturbed by

D�hh1 and D�hh2. Then replacing in the direct problem Biq by
Biq þ DBiq, h1 by h1 þ D�hh1 and h2 by h2 þ D�hh2, sub-

tracting from the resulting expressions the direct prob-

lem and neglecting the second-order terms, the following

sensitivity problem for the sensitivity functions D�hh1 and

D�hh2 are obtained.

oD�hh1ðX ; sÞ
os

¼ o2D�hh1ðX ; sÞ
oX 2

� eKo
oD�hh2ðX ; sÞ

os
;

in 06X 6 1; s > 0; ð6aÞ

oD�hh2ðX ; sÞ
os

¼ Lu
o2D�hh2ðX ; sÞ

oX 2
� LuPn

o2D�hh1ðX ; sÞ
oX 2

;

in 06X 6 1; s > 0: ð6bÞ

Subjected to the following initial and boundary condi-

tions

D�hh1ðX ; 0Þ ¼ 0; in 06X 6 1; s > 0; ð6cÞ

D�hh2ðX ; 0Þ ¼ 0; in 06X 6 1; s > 0; ð6dÞ

oD�hh1ðX ; sÞ
oX

¼ 0; at X ¼ 0; ð6eÞ

oD�hh2ðX ; sÞ
oX

¼ �Pn
oD�hh1ðX ; sÞ

oX
; at X ¼ 0; ð6fÞ

oD�hh1ðX ; sÞ
oX

� DBiqðsÞ½1� h1	 þ BiqðsÞD�hh1

� ð1� eÞKoLuBimðsÞD�hh2 ¼ 0; at X ¼ 1; ð6gÞ

�oD�hh2ðX ; sÞ
oX

þ Pn
oD�hh1ðX ; sÞ

oX
� BimðsÞD�hh2 ¼ 0; at X ¼ 1:

ð6hÞ

Similarly, by perturbing BimðsÞ with DBimðsÞ, the second
sensitivity problem can be obtained as

oD~hh1ðX ; sÞ
os

¼ o2D~hh1ðX ; sÞ
oX 2

� eKo
oD~hh2ðX ; sÞ

os
;

in 06X 6 1; s > 0; ð7aÞ

oD~hh2ðX ; sÞ
os

¼ Lu
o2D~hh2ðX ; sÞ

oX 2
� LuPn

o2D~hh1ðX ; sÞ
oX 2

;

in 06X 6 1; s > 0: ð7bÞ

Subjected to the following initial and boundary condi-

tions

D~hh1ðX ; 0Þ ¼ 0; in 06X 6 1; s ¼ 0; ð7cÞ

D~hh2ðX ; 0Þ ¼ 0; in 06X 6 1; s ¼ 0; ð7dÞ

oD~hh1ðX ; sÞ
oX

¼ 0; at X ¼ 0; ð7eÞ

oD~hh2ðX ; sÞ
oX

¼ �Pn
oD~hh1ðX ; sÞ

oX
; at X ¼ 0; ð7fÞ

oD~hh1ðX ; sÞ
oX

þ BiqðsÞD~hh1 � ð1� eÞKoLu½DBimðsÞð1� h2Þ

� BimðsÞD~hh2	 ¼ 0; at X ¼ 1; ð7gÞ

� oD~hh2ðX ; sÞ
oX

þ Pn
oD~hh1ðX ; sÞ

oX
þ DBimðsÞð1� h2Þ

� BimðsÞD�hh2 ¼ 0; at X ¼ 1: ð7hÞ

We should note that the above sensitivity problems can

also be solved by Crank–Nicolson finite difference

method with iterations.

The functional J ½BiqðsÞ;BimðsÞ	 for iteration nþ 1 is

obtained by rewriting Eq. (2) as

J ½Binþ1
q ðsÞ;Binþ1

m ðsÞ	

¼
Z s

s¼0

½h1ðXs; s;Binq � bn
1P

n
1 ;Bi

n
m � bn

2P
n
2 Þ � Y1ðXs; sÞ	2 ds

þ
Z s

s¼0

½h2ðXs; s;Binq � bn
1P

n
1 ;Bi

n
m � bn

2P
n
2 Þ

� Y2ðXs; sÞ	2 ds; ð8Þ

where we replaced Binþ1
q ðsÞ and Binþ1

m ðsÞ by the expres-

sion given by Eqs. (3a) and (3b).

If the estimated temperatures h1ðXs; s;Binq � bn
1P

n
1 ;

Binm � bn
2P

n
2 Þ and moistures h2ðXs; s;Binq � bn

1P
n
1 ;Bi

n
m�

bn
2P

n
2 Þ are linearized by a Taylor expansion, Eq. (8) takes

the form:

J ½Binþ1
q ðsÞ;Binþ1

m ðsÞ	

¼
Z sf

s¼0

½h1ðXs; s;Binq;Bi
n
mÞ � bn

1D�hh1ðPn
1 Þ � bn

2D~hh1ðPn
2 Þ

� Y1ðXs; sÞ	2 ds þ
Z sf

s¼0

½h2ðXs; s;Binq;Bi
n
mÞ

� bn
1D�hh2ðPn

1 Þ � bn
2D~hh2ðPn

2 Þ � Y2ðXs; sÞ	2 ds; ð9Þ

where h1ðXs; s;Binq;Bi
n
mÞ and h2ðXs; s;Binq;Bi

n
mÞ are the

solution of the direct problem by using estimate BiqðsÞ
and BimðsÞ at time s.

The sensitivity functions D�hh1ðPn
1 Þ, D�hh2ðPn

1 Þ and D~hh1

ðPn
2 Þ, D~hh2ðPn

2 Þ are taken as the solutions of problems

(6a)–(7h) at time s by letting DBiqðsÞ ¼ Pn
1 ðsÞ in Eq. (6g)

and DBimðsÞ ¼ Pn
2 ðsÞ in Eqs. (7g) and (7h), respectively.

Eq. (9) is differentiated with respect to bn
1 and bn

2,

respectively, and equating them equal to zero to obtain
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two independent equations. After solving these two

equations, the search step sizes bn
1 and bn

2 can be deter-

mined as:

bn
1 ¼ ðC3C5 � C2C4Þ=ðC3C3 � C1C2Þ; ð10aÞ

bn
2 ¼ ðC3C4 � C1C5Þ=ðC3C3 � C1C2Þ; ð10bÞ

where

C1 ¼
Z sf

s¼0

ðD�hh2
1 þ D�hh2

2Þds; ð10cÞ

C2 ¼
Z sf

s¼0

ðD~hh2
1 þ D~hh2

2Þds; ð10dÞ

C3 ¼
Z sf

s¼0

ðD�hh1D~hh1 þ D�hh2D~hh2Þds; ð10eÞ

C4 ¼
Z sf

s¼0

½ðh1 � Y1ÞD�hh1 þ ðh2 � Y2ÞD�hh2	ds; ð10fÞ

C5 ¼
Z sf

s¼0

½ðh1 � Y1ÞD~hh1 þ ðh2 � Y2ÞD~hh2	ds: ð10gÞ

6. Adjoint problem and gradient equation

To obtain the adjoint problem, Eqs. (1a) and (1b) are

multiplied by the Lagrange multiplier (or adjoint func-

tion) k1ðX ; sÞ and k2ðX ; sÞ, respectively, and the resulting

expression is integrated over the time and correspondent

space domains. Then the result is added to the right

hand side of Eq. (2) to yield the following expression for

the functional J ½BiqðsÞ;BimðsÞ	:

J ½BiqðsÞ;BimðsÞ	

¼
Z 1

X¼0

Z sf

s¼0

½h1ðX ; sÞ � Y1ðX ; sÞ	2dðX � XsÞdsdX

þ
Z 1

X¼0

Z sf

s¼0

½h2ðX ; sÞ � Y2ðX ; sÞ	2dðX � XsÞdsdX

þ
Z 1

X¼0

Z sf

s¼0

k1ðX ; sÞ
o2h1ðX ; sÞ

oX 2

�
� eKo

oh2ðX ; sÞ
os

� oh1ðX ; sÞ
os

�
dsdX þ

Z 1

X¼0

Z sf

s¼0

k2ðX ; sÞ

� Lu
o2h2ðX ; sÞ

oX 2

�
� LuPn

o2h1ðX ; sÞ
oX 2

� oh2ðX ; sÞ
os

�
dsdX :

ð11Þ

Firstly, the variation DJ1 is obtained by perturbing

BiqðsÞ by BiqðsÞ þ DBiqðsÞ, h1 by h1ðX ; sÞ þ D�hh1 and h2

by h2 þ D�hh2 in Eq. (11), subtracting from the resulting

expression the original Eq. (11) and neglecting the sec-

ond-order terms. We thus find

DJ1 BiqðsÞ;BimðsÞ
� �
¼

Z 1

X¼0

Z sf

s¼0

2½h1ðX ; sÞ � Y1ðX ; sÞ	D�hh1dðX � XsÞdsdX

þ
Z 1

X¼0

Z sf

s¼0

2½h2ðX ; sÞ � Y2ðX ; sÞ	D�hh2dðX � XsÞdsdX

þ
Z 1

X¼0

Z sf

s¼0

k1ðX ; sÞ o2D�hh1ðX ; sÞ
oX 2

"
� eKo

oD�hh2ðX ; sÞ
os

� oD�hh1ðX ; sÞ
os

#
dsdX þ

Z 1

X¼0

Z sf

s
k2ðX ; sÞ

� Lu
o2D�hh2ðX ; sÞ

oX 2

"
� LuPn

o2D�hh1ðX ; sÞ
oX 2

� oD�hh2ðX ; sÞ
os

#
dsdX : ð12Þ

In Eq. (12), the third and fourth integral terms are in-

tegrated by parts; the initial conditions of the sensitivity

problem are utilized. The vanishing of the integrands

leads to the following adjoint problem for the determi-

nation of k1ðX ; sÞ and k2ðX ; sÞ:
o2k1ðX ; sÞ

oX 2
� LuPn

o2k2ðX ; sÞ
oX 2

þ 2ðh1 � Y1ÞdðX � XsÞ

þ ok1ðX ; sÞ
os

¼ 0; in 06X 6 1; s > 0; ð13aÞ

Lu
o2k1ðX ; sÞ

oX 2
þ eKo

ok1ðX ; sÞ
os

þ 2ðh2 � Y2ÞdðX � XsÞ

þ ok2ðX ; sÞ
os

¼ 0; in 06X 6 1; s > 0: ð13bÞ

Subjected to the following initial and boundary condi-

tions

k1ðX ; sfÞ ¼ 0; in 06X6 1; s ¼ sf ; ð13cÞ

k2ðX ; sfÞ þ eKok1ðX ; sfÞ ¼ 0; in 06X 6 1; s ¼ sf ;

ð13dÞ

ok1ðX ; sÞ
oX

¼ LuPn
ok2ðX ; sÞ

oX
; at X ¼ 0; s > 0; ð13eÞ

oh2ðX ; sÞ
oX

¼ 0; at X ¼ 0; s > 0; ð13fÞ

LuPn
ok2ðX ; sÞ

oX
� ok1ðX ; sÞ

oX
� BiqðsÞk1ðX ; sÞ ¼ 0;

at X ¼ 1; s > 0; ð13gÞ

� Lu
ok2ðX ; sÞ

oX
� Luk2BimðsÞ þ ð1� eÞKoLuBimðsÞ

� k1ðX ; sÞ ¼ 0; at X ¼ 1; s > 0: ð13hÞ

It is obvious that the adjoint problem is a one-layer not

a two-layer problem when interior measurements are

utilized. The adjoint problems are different from the

standard initial value problems in that the final time

C.-H. Huang, C.-Y. Yeh / International Journal of Heat and Mass Transfer 45 (2002) 4643–4653 4647



conditions at time s ¼ sf is specified instead of the cus-

tomary initial condition. However, this problem can be

transformed to an initial value problem by the trans-

formation of the time variables as s� ¼ sf � s. Then the

techniques of Crank–Nicolson finite differences method

with iterations can be used to solve the above adjoint

problems.

Finally, the following integral term is left

DJ1 ¼
Z sf

s¼0

k1ð1� h1ÞDBiq ds: ð14Þ

From definition [1], the functional increment can be

presented as

DJ1 ¼
Z sf

s¼0

ðJ 0
1DBiqÞdt: ð15Þ

A comparison of Eqs. (14) and (15) leads to the fol-

lowing expression for the gradient of functional J 0
1:

J 0
1½BiqðsÞ	 ¼ k1ð1; sÞ½1� h1ð1; sÞ	: ð16Þ

Similarly, to derive the adjoint problems for the case

when perturbing BimðsÞ, Eqs. (1a) and (1b) are multi-

plied by the Lagrange multiplier (or adjoint function)

k3ðX ; sÞ and k4ðX ; sÞ and follow the same procedure as

described previously. Eventually we find that the solu-

tions for adjoint equation of k3ðX ; sÞ and kðX ; sÞ are

identical to that for k1ðX ; sÞ and k2ðX ; sÞ. This implies

that the adjoint equations need to be solved only once

since k1ðX ; sÞ ¼ k3ðX ; sÞ and k2ðX ; sÞ ¼ k4ðX ; sÞ. Finally
the gradient equation for BimðsÞ can be obtained as

J 0
2½BimðsÞ	 ¼ �KoLuk1ð1; sÞ � ½1� h2ð1; sÞ	

þ Luk2ð1; sÞ � ½1� h2ð1; sÞ	: ð17Þ

We note that J 0
1½BiqðsfÞ	 and J 0

2½BimðsfÞ	 are always equal
to zero since k1ð1; sfÞ ¼ k2ð1; sfÞ ¼ 0 at s ¼ sf . With this

fact and Eqs. (3a)–(5b) we concluded that the estimated

values for BimðsfÞ and BiqðsfÞ are definitely equal to the

values of its initial guess. We will show this by using

numerical experiments in the section of results and dis-

cussions and then raise a question about this point for

Ref. [5].

One easy way to improve the prediction at end time

sf is to extend the measurement time. For instant, if end

time sf ¼ 10, we should measure the data up to, say,

s ¼ 12 and then perform the inverse calculations. Finally

extract the inverse solutions to sf ¼ 10. The singularity

near sf can greatly be improved.

7. Stopping criterion

If the problem contains no measurement errors, the

traditional check condition is specified as

J ½BiqðsÞ;BimðsÞ	 < g; ð18Þ

where g is a small-specified number. However, the

measured temperature and moisture data may contain

measurement errors. Therefore, we do not expect the

functional Eq. (2) to be equal to zero at the final itera-

tion step. Following the experience of the authors [1–4],

we use the discrepancy principle as the stopping crite-

rion, i.e. we assume that the residuals for temperature

and moisture may be approximated by

h1ðX ; sÞ � Y1ðX ; sÞ ¼ h2ðX ; sÞ � Y2ðX ; sÞ � r; ð19Þ

where r is the stand deviation of the measurements,

which is assumed to be a constant.

Substituting Eq. (19) into Eq. (2), the following ex-

pression is obtained for g:

g ¼ r2sf : ð20Þ

Then, the stopping criterion is given by Eq. (18) with g
determined from Eq. (20).

8. Computational procedure

The computational procedure for the solution of this

inverse heat and mass transfer problem may be sum-

marized as follows:

Suppose BinqðsÞ and BinmðsÞ are available at iteration n.

Step 1. Solve the direct nonlinear problem given by Eqs.

(1a)–(1h) for h1ðX ; sÞ and h2ðX ; sÞ.
Step 2. Examine the stopping criterion e. Continue if

not satisfied.

Step 3. Solve the adjoint problem given by Eqs. (13a)–

(13h) for k1ðX ; sÞ and k2ðX ; sÞ.
Step 4. Compute the gradient of the functional

J 0
1½BiqðsÞ	 and J 0

2½BimðsÞ	 from Eqs. (16) and

(17), respectively.

Step 5. Compute the conjugate coefficients cn1 and cn2 and
the direction of descent Pn

1 ðsÞ and Pn
2 ðsÞ from

Eqs. (5a) and (5b) and Eqs. (4a) and (4b), respec-

tively.

Step 6. Set DBiqðsÞ ¼ Pn
1 ðsÞ and DBimðsÞ ¼ Pn

2 ðsÞ, and

solve the sensitivity problems given by Eqs.

(6a)–(7h) for D�hh1ðPn
1 Þ, D�hh2ðPn

1 Þ and D~hh1ðPn
2 Þ,

D~hh2ðPn
2 Þ.

Step 7. Compute the search step sizes bn
1 and bn

2 from

Eqs. (10a)–(10g).

Step 8. Compute the new estimation for Binþ1
q ðsÞ and

Binþ1
m ðsÞ from Eqs. (3a) and (3b) and return to

step 1.

9. Results and discussions

The objective of this article is to show the validity of

the CGM in simultaneous estimating the time-depen-

dent Biot numbers BiqðsÞ and BimðsÞ for heat and
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moisture transfer problem with no prior information on

the functional form of the unknown quantities.

Before proceed to study the inverse problem that we

are going to consider here, one should make sure first

that the numerical solution for the direct problem is

correct, otherwise the discussions of the inverse solu-

tions will become meaningless. To test the accuracy of

the direct problem we first solve Eqs. (1a)–(1h) by using

the following given conditions and quantities:

Lu ¼ 0:02; e ¼ 0:2; Bim ¼ 2:5; Biq ¼ 2:5;

Ko ¼ 5:0; Pn ¼ 0:6; Q ¼ 0:9:

Besides, the space and time increments used in numerical

calculations are taken as DX ¼ 0:01 (i.e. 100 grid points

in space) and Ds ¼ 0:001, respectively. The comparison

of analytical [6] and numerical temperature and mois-

ture distributions are shown in Figs. 2 and 3, respec-

tively. We should note that the original figure (i.e. Fig. 7)

for temperature distribution in Ref. [6] may exist some

mistype errors for Fourier number (or dimensionless

time), the indicated s ðor FoÞ ¼ 0:1, 0.2, 0.4, 0.8, 1.6 and

3.2 should be replaced by s ðor FoÞ ¼ 0:05, 0.1, 0.2, 0.4,
0.8 and 1.6, while s ¼ 3:2 was not reported in the orig-

inal figure in Ref. [6]. For this reason we did not show

the analytical solution for s ¼ 3:2 in Fig. 2. It can be

seen from Figs. 2 and 3 that they are in a good agree-

ment, therefore the verification of our numerical pro-

gram for direct problem is thus completed.

To illustrate the accuracy of the CGM in simulta-

neous predicting Biot numbers BiqðsÞ and BimðsÞ with

inverse heat and mass transfer analysis from the knowl-

edge of measured transient temperature and moisture

distributions, we consider two specific examples where

the Biot numbers BiqðsÞ and BimðsÞ are in different

forms.

One of the advantages of using the CGM is that the

initial guesses of the unknown Biot numbers BiqðsÞ and
BimðsÞ can be chosen arbitrarily. In all the test cases

considered here, the initial guesses of BiqðsÞ and BimðsÞ
used to begin the iteration are taken as Bi0qðsÞ ¼
Bi0mðsÞ ¼ 0:0.

In order to compare the results for situations in-

volving random measurement errors, we assume nor-

mally distributed uncorrelated errors with zero mean

and constant standard deviation. The simulated inexact

measurement data Y can be expressed as

Y ¼ Yexact þ xr; ð21Þ

where Yexact is the solution of the direct problem with an

exact BiqðsÞ and BimðsÞ; r is the standard deviation of

the measurements; and x is a random variable that

generated by subroutine DRNNOR of the IMSL [9] and

will be within �2.576 to 2.576 for a 99% confidence

bound.

We now present below two numerical experiments in

determining BiqðsÞ and BimðsÞ by the inverse analysis.

9.1. Numerical test case 1

The parameters for the direct problem are given as

follows:
Fig. 2. The comparison of analytical and numerical solution

for temperature distributions.

Fig. 3. The comparison of analytical and numerical solution

for moisture distributions.
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Lu ¼ 0:4; e ¼ 0:2; Ko ¼ 5:0; Pn ¼ 0:6; Q ¼ 0:0:

Besides, the space and time increments used in nu-

merical calculations are taken as DX ¼ 0:02 for X ¼ 1:0
(i.e. m ¼ 1–50 and m is the grid points in space) and

Ds ¼ 0:002 for total time sf ¼ 1:0 (i.e. 500 discreted

time), respectively. Therefore a total of 1000 unknown

discreted Biot numbers are to be determined in the

present study.

The exact time-dependent Biot numbers BiqðsÞ and

BimðsÞ for heat and moisture transfer problem are as-

sumed as

BiqðsÞ ¼ 5� 2 cos 4p
s
sf

	 

; 0 < s6 sf ; ð22aÞ

BimðsÞ ¼ 3þ 2 sin 4p
s
sf

	 

; 0 < s6 sf : ð22bÞ

One should note that in the present test case we use

initial guess Bi0qðsÞ ¼ Bi0mðsÞ ¼ 0:0, but now the exact

values of BiqðsfÞ and BimðsfÞ are not equal to zero,

therefore we concluded that the singularity at final time

sf will be happen in this case and the estimated values

for BiqðsfÞ and BimðsfÞ must be the same as the initial

guess values, i.e. BiqðsfÞ ¼ BimðsfÞ ¼ 0:0.
The inverse analysis is first performed by assuming

exact measurements, r ¼ 0:0 and by using measurement

data at measure position m ¼ 48 (i.e. at Xs ¼ 0:96 and

very close to the boundary). By setting 30 iterations, the

functional can be decreased to J ¼ 6:12� 10�6. The

measured and estimated temperatures (Y1 and h1) and

moistures (Y2 and h2) are shown in Fig. 4 while the exact

and estimated BiqðsÞ and BimðsÞ are shown in Fig. 5. It

can be seen from Fig. 4 that there is a good agreement

between the measured and estimated temperatures and

moistures. Moreover, form Fig. 5 we learn that the es-

timations for BiqðsÞ and BimðsÞ are very accurate except

near final time. The estimated BiqðsfÞ and BimðsfÞ at

final time sf both approach to zero, (i.e. the initial guess

value) due to the singularity addressed previously.

This phenomena should but not be seen in Ref. [5]. In

their paper the initial guess of moisture flux is taken as

0.4 and 10�3, respectively, but none of the estimated

moisture flux approaches to the initial guess values at

final time sf , those results are suspicious.

The average errors for BiqðsÞ and BimðsÞ are calcu-

lated as ERR1 ¼ 0:43% and ERR2 ¼ 1:13%, respec-

tively, where the average errors for the estimated BiqðsÞ
and BimðsÞ are defined as

ERR1% ¼
X500
J¼1

BiqðJÞ � bBiBiqðJÞ
BiqðJÞ














" #

 500� 100%;

ð23aÞ

ERR2% ¼
X500
J¼1

BimðJÞ � bBiBimðJÞ
BimðJÞ














" #

 500� 100%:

ð23bÞ

Here J represents the index of discreted time, while

BiqðJÞ and BimðJÞ denote the exact values while bBiBiqðJÞ
and bBiBimðJÞ denote the estimated values of Biot number.

Then the inverse analysis is performed again by using

measurement data measured at m ¼ 40 (i.e. Xs ¼ 0:8).
Fig. 4. The measured and estimated temperature and moisture

distributions with r ¼ 0:0 at m ¼ 48 in test case 1.

Fig. 5. The exact and estimated Biot number distributions with

r ¼ 0:0 at m ¼ 48 in test case 1.
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By setting 30 iterations, the functional can be decreased

to J ¼ 4:61� 10�6. The measured and estimated tem-

peratures (Y1 and h1) and moistures (Y2 and h2) are also

in a good agreement and is shown in Fig. 6. However,

the accuracy of the estimated values of Biot number is

decreased and the results are shown in Fig. 7. The av-

erage errors for BiqðsÞ and BimðsÞ are calculated as

ERR1 ¼ 2:66% and ERR2 ¼ 3:83%, respectively.

Next, let us discuss the influence of the measurement

errors on the inverse solutions. First, the measurement

error for the temperature and moisture measured at

m ¼ 48 is taken as r ¼ 0:005, then error is increased to

r ¼ 0:02. The estimated BiqðsÞ and BimðsÞ is shown in

Figs. 8 and 9, respectively. The stopping criteria can be

obtained by discrepancy principle and given in Eq. (20).

The number of iteration for r ¼ 0:005 is 18 and the

average errors for BiqðsÞ and BimðsÞ are calculated as

ERR1 ¼ 1:07% and ERR2 ¼ 1:42%, respectively. The

number of iteration for r ¼ 0:02 is 10 and the average

errors for BiqðsÞ and BimðsÞ are calculated as ERR1 ¼
5:13% and ERR2 ¼ 9:13%, respectively. This implies

that reliable inverse solutions can still be obtained when

measurement errors are considered.

9.2. Numerical test case 2

The parameters for the direct problem are given as

follows:

Lu ¼ 0:02; e ¼ 0:2; Ko ¼ 5:0; Pn ¼ 0:6; Q ¼ 0:0:

Besides, the space and time increments used in numerical

calculations are taken the same as were used in numer-

ical test case 1.

Fig. 6. The measured and estimated temperature and moisture

distributions with r ¼ 0:0 at m ¼ 40 in test case 1.
Fig. 7. The exact and estimated Biot number distributions with

r ¼ 0:0 at m ¼ 40 in test case 1.

Fig. 8. The exact and estimated Biot number distributions with

r ¼ 0:05 at m ¼ 48 in test case 1.
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The exact time-dependent Biot numbers BiqðsÞ and

BimðsÞ are now assumed as a step function and given as

follows

BiqðsÞ ¼ 2:0; 0 < s6 0:5;
BiqðsÞ ¼ 0:5; 0:5 < s6 sf ;

�
ð24aÞ

BimðsÞ ¼ 2:5; 0 < s6 0:5;
BimðsÞ ¼ 1:0; 0:5 < s6 sf :

�
ð24bÞ

Test case 2 is a more rigorous examination since there is

a discontinuity for Biot numbers. It is expected that the

inverse solutions are worse than test case 1.

The inverse analysis is first performed by assuming

exact measurements, r ¼ 0:0 and by using measurement

data at measure position m ¼ 48 (i.e. at Xs ¼ 0:96). By
setting 30 iterations, the functional can be decreased to

J ¼ 3:03� 10�7. The exact and estimated BiqðsÞ and

BimðsÞ are shown in Fig. 10. The estimated Biqðsf ) and
BimðsfÞ at final time sf also approach to zero for the

reason stated previously. The average errors for BiqðsÞ
and BimðsÞ are determined as ERR1 ¼ 0:47% and

ERR2 ¼ 1:38%, respectively.

Then the influence of the measurement errors on the

inverse solutions is examined. The measurement error

for the temperature and moisture measured at m ¼ 48 is

firstly taken as r ¼ 0:001, the stopping criteria can be

obtained from Eq. (20) and the number of iteration is

22. The estimated BiqðsÞ and BimðsÞ is shown in Fig. 11

and the average errors for BiqðsÞ and BimðsÞ are calcu-

lated as ERR1 ¼ 0:52% and ERR2 ¼ 1:51%, respec-

tively. Then error is increased to r ¼ 0:005. After 10

Fig. 9. The exact and estimated Biot number distributions with

r ¼ 0:002 at m ¼ 48 in test case 1.
Fig. 10. The exact and estimated Biot number distributions

with r ¼ 0:0 at m ¼ 48 in test case 2.

Fig. 11. The exact and estimated Biot number distributions

with r ¼ 0:001 at m ¼ 48 in test case 2.
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iterations the inverse solution can be obtained and the

result is shown in Fig. 12. The average errors for BiqðsÞ
and BimðsÞ are calculated as ERR1 ¼ 0:86% and

ERR2 ¼ 2:03%, respectively.

From the above two test cases we learned that an

inverse heat and moisture transfer problem in simulta-

neous estimating the time-dependent Biot numbers

BiqðsÞ and BimðsÞ for a porous material is now com-

pleted. Reliable estimations can be obtained when using

either exact or error measurements.

10. Conclusions

The CGM was successfully applied for the solution

of the inverse heat and mass transfer conduction prob-

lem to estimate the unknown the time-dependent Biot

numbers BiqðsÞ and BimðsÞ for a porous material by

utilizing simulated temperature readings obtained from

different measured positions.

Two test cases involving different form of Biot num-

bers and measurement errors were considered. The re-

sults show that the inverse solutions obtained by CGM

are still very accurate as the measurement errors are

increased.
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